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Abstract-A numerical study is performed on double diffusive natural convection fluid flow in a vertical 
rectangular cavity of aspect ratio 4 when the temperature and concentration gradients are imposed in the 
horizontal direction. A finite difference algorithm is adopted to solve the non-linear momentum equations 
coupled with the energy and concentration equations. Double diffusive multicell flow structures observed 
in experiments by the authors are simulated successfully. Different flow structure regimes are obtained as 

a function of the Grashof number ratio for aiding and opposing buoyancy conditions. 

1. INTRODUCTION 

THIS PAPER considers double diffusive natural con- 
vection when horizontal temperature and con- 
centration gradients coexist in a rectangular cavity. 

The natural convection induced by simultaneous heat 
and mass transfer is often referred to as double diffus- 
ive convection when the Lewis number is considerably 
different from unity. Double diffusive convection fre- 
quently occurs in oceans, magma chambers, as well as 
in many engineering applications such as solar ponds, 
natural gas storage tanks, crystal manufacturing, and 
metal solidification processes. Unique double diffus- 
ive convection phenomena, such as salt fingers and 
diffusive interfaces have been observed due to the 
significant difference in diffusivities of heat and mass 

PI. 
There are many convection modes depending on the 

directions of temperature and concentration gradients 
relative to gravity, as pointed out by Ostrach [2]. Most 
of the initial theoretical studies on double diffusive 
convection have been performed for vertical tem- 
perature and concentration gradients for ocean appli- 
cations using linear stability theory [l]. Similar con- 
figurations have been studied numerically to simulate 
the complicated, sometimes chaotic, mantle move- 
ment in the earth’s crust [3]. The problem can be 
considered as an extension of Benard convection cells. 
A finite element scheme has been applied [4] to simu- 
late the layered fluid structures observed in exper- 
iments on lateral heating in a stably salt-stratified fluid 
[5]. It was found that stability theory can predict the 
initial stage of the transient process. These con- 
figurations, either lateral heating or bottom heating, 
are inherently transient, as the initial salt stratification 
disappears. 

Beckermann and Viskanta [6] simulated double 
diffusive layers occurring in a solidification process 
when a horizontal temperature gradient is present. 
Considerable discrepancies between numerical solu- 

tions and experimental measurements were reported 
because of the complicated solidification process, 
which involves phase changes and non-stationary 
irregular interfaces. When horizontal temperature 
and concentration gradients are present in a simple 
rectangular enclosure, steady-state solutions were 
obtained by Hu and El-Wakil [7] and more recently 
by Benard et al. [8]. The flow structure obtained was 
a unicell flow structure similar to pure heat transfer 
convection, since the Lewis number considered was 
not much different from unity. Recent experiments on 
double diffusive convection have exhibited multicell 
flow structures for horizontal temperature and con- 
centration gradients in an enclosed cavity [9, lo]. No 
references, however, have been found which simu- 
late steady-state double diffusive convection cells in a 
simple rectangular enclosure geometry using a numer- 
ical technique. The difficulty lies in the large values 
for the Lewis and Grashof numbers, which makes it 
difficult to obtain a converged solution. 

The main purpose of this study is to simulate the 
double diffusive multicell flow structures observed in 
an experimental study by the present authors [ 11, 121. 
Both aiding and opposing buoyant conditions are 
considered in a cavity of aspect ratio 4. The Prandtl 
and the Schmidt numbers are set at 8 and 2000, respec- 
tively, which approximate the experimental values. 
The Grashof number range studied in the experiments 
is extended over a wider range. Thermal Grashof 
numbers vary from -4 x lo5 to 3 x lo5 for a solutal 
Grashof number fixed at lo5 and 3 x 106. Com- 
prehensive information on velocity, temperature, and 
concentration distributions in a cavity are presented 
and are compared with the experimental results. 

2. MATHEMATICAL FORMULATION 

A schematic diagram of the present problem is 
shown in Fig. 1. Depending on the directions of the 
buoyant forces, the problem can be either an aiding or 
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NOMENCLATURE 

c molar concentration of cupric ions 
[moi 1.. ‘f 

c dimensionless concentration, 

(C- C,o~)/(Chigh - c,,,t 
D diffusion coefficient of cupric ions in 

aqueous solution [m” s- ‘1 

.4 gravitational acceleration [m s- ‘1 
Gr, solutal Grashof number, g/&,ACH3/v2 
Gr, thermal Grashof number, g~~AT~~~v* 
H height of the enclosure [m] 
Ir heat transfer coefficient [W m- ’ “C- ‘1 

h, mass transfer coefficient [m s- ‘1 
k thermal conductivity [W m- ’ “C- ‘1 
L width of the enclosure [m] 
Le Lewis number, Sc/Pr 

Ll number of grids in the x-direction 
Ml number of grids in the y-direction 
N buoyancy ratio, ,&,AC/fi,AT or Gr,/Grr 
Nu Nusselt number, hH/k 

P pressure 

Pr Prandtl number, v/cc 
SC Schmidt number, v/D 
fla Sherwood number, ~~~1~ 
T temperature [“Cl 
f dimensionless temperature, 

(T- ~~M)/(TM - Tco,d) 
U horizontal velocity [m se- “1 
Y vertical velocity fm s ‘1 

X horizontal coordinate [m] 
Y vertical coordinate [m]. 

Greek symbols 
(Y thermal diffusivity [m2 s- ‘1 

Bin solutal volumetric expansion coefficient 
[I moi- ‘1 

/$ thermal volumetric expansion coefficient 

tzc-- ‘1 
V kinematic viscosity [m2 s- ‘1 

density [kg m- ‘1 
stream function. 

opposing buoyancy condition. The solutal boundary 
layer is considered to be thinner than the thermal 
boundary layer since the solutal diffusivity is much 
smaller than the thermal diffusivity. 

The Sow in the cavity is considered to be two- 
dimensional and steady, and follows classical Bous- 
sinesq approximation. The fluid is assumed to be 
incompressible and Newtonian in behavior with neg- 
ligible viscous dissipation. The heat flux driven by 
concentration gradients (thermal effusion or Soret 
effect) and the mass flux driven by temperature gradi- 
ents (diffusion therm0 or Dufour effect) are neglected. 
By employing the above assumptions into the con- 
servation equations of mass, momentum, energy, and 
species, a set of governing equations is obtained as 

AIDING OPposlffi 
BLKXANCY l3lDYANcY 

w, - 
vp, c __________c 

VPlT - 
vp, c ______-___, 

!!!+?f=() 
ax ay 

u!E+v~=~($+$). (5) 

The above equations have been made dimensionless 
using the following parameters : 

x u V 
x zz -- 

H’ “=GIH’ v=v/H’ 

The dimensionless boundary conditions for the 
physical system considered in the present study are 

at x=0; c = 0, t = 1 (aiding) 

f = 0 (opposing) 

L 
at x=-; 

H 
c= l,t=O(aiding) 

Fit. 1. Schematic drawings of the present problem. t = 1 (opposing) 
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at ac 
-=--=0 aty=Oandl 
ay ay 

u=v=O atx=O,k andatJ:=O,l. (7) 

Horizontal velocity of the bulk fluid at the vertical 
surfaces due to the cupric ion transfer is found to 
be negligible. The concentration of cupric ions on a 
cathode is zero at a limiting current condition. The 
concentration of the cupric ions on the anode surface 
is considered to be twice the bulk concentration by 
assuming symmetry of the cathode and anode [ 1 I]. 

For aiding buoyancy conditions, the vertical hot 
surface is maintained at a low concentration, while 
the cold surface is maintained at a high concentration. 
For opposing buoyancy conditions, this is reversed. 
In actual programming, a buoyancy force acting in 
the reverse direction is implemented by changing the 
sign of the thermal Grashof number in equation 
(3) instead of changing the values of the boundary 
conditions. 

3. SOLUTION PROCEDURE 

Finite difference equations are derived by inte- 
grating the governing differential equations over an 
elementary control volume. A power law scheme is 
adopted for the convection-diffusion formulation. 
The coupling between the non-linear algebraic equa- 
tions is handled using the SIMPLER algorithm [13]. 
The discretized equations obtained are solved iter- 
atively, using a line-by-line application of the Thomas 
algorithm. The non-linear coefficients are substituted 
successively with updated values. Underrelaxation is 
required to ensure the convergence of the iterative 
procedure, and a block correction scheme is incor- 
porated to accelerate the convergence rate. 

Non-uniform grid spacing is used in the x-direction. 
Grid spacing is minimum near a vertical wall and is 
increased exponentially away from the wall up to the 
center of the cavity according to the following 
expression : 

i-2 ’ 
XU(i) = L1 

[ 1 
-- 
2 2 

(8) 

where XV(i) are the locations of control volume faces, 
and L1 is the number of grids in the x-direction. 
Uniform mesh spacing is used in the y-direction in 
order to resolve the possible muiticell flow structure. 
Since the location of the cell interfaces are not known 
a priori, fine meshes are required everywhere in the 
vertical direction. Typical numbers of grids used are 
34 x 130 in the X- and y-directions, respectively. 

The solution is considered to be fully converged 
when the maximum value of the mass source and the 
changes of the dependent variables from iteration to 

iteration are smaller than a prescribed value, i.e. lo- ‘. 
Due to the small solutal diffusivity of the fluid, the 
convergence rate is very slow, especially for solutal 
buoyancy dominant Aows. A typical number of iter- 
ations to obtain a fully converged solution is approxi- 
mately 1000 for simple flows, and more than 5000 for 
complex flows. Most of the runs have been made on 
a Cray-2 super~omputer with four processors at the 
University of Minnesota Supercomputer Institute. 
The CPU time for calculating 1000 iterations for a 
34 x 130 grid is approximately 10 min. 

Nusselt and Sherwood numbers are calculated after 
convergence is attained. The local Nusselt number at 
the wall is defined as 

The non-dimensional temperature gradients are 
calculated by assuming a linear temperature profile 
between grids. The local Nusselt numbers are inte- 
grated to obtain an overall average Nusselt number 
for the cavity. An overall Nusselt number in the 
middle of the cavity can be calculated by adding a 
convection term to the diffusion term. It is within 
0.5% of the Nusselt number determined at the wall. 
The difference between them is an indication of the 
convergence and the correctness of the finite difference 
approximation. 

Similar equations can be applied in calcuiating the 
Sherwood numbers. The local Sherwood number at a 
wall is expressed as 

The average Sherwood numbers are obtained by 
integrating the local values in the y-coordinate direc- 
tion. The average values at the two vertical walls are 
identical. 

4. RESULTS AND DISCUSSION 

4. I. Test of grid dependence 
In order to validate the present numerical code, and 

to report the error range of the results, preliminary 
numerical aspects are presented first. Pure heat trans- 
fer solutions obtained for Ra = 103-106, Pr = 0.71 in 
a square cavity have been compared with the bench- 
mark results of de Vahl Davis 1141. The average 
Nusselt numbers using second-order polynomials 
extrapolated to zero grid size are within 1% of the 
benchmark results. Pure heat transfer solutions for 
a high Prandtl number fluid (Pr = 2000, Ra = 105, 
H/L = 4) have also been obtained by varying the grid 
spacing in each direction independently (Ll = 22-52, 
Ml = 34-130). The average Nusselt numbers can be 
found in ref. [12]. The results show that the number 
of grid points in the x-direction should be larger than 
22 and the number of grid points in the y-direction 
should be larger than 82 in order to maintain the 
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a) 6x18 b) 22x42 c) 22x82 d) 34x130 e) 42x162 

FIG. 2. Effect of grid spacing on converged solution flow structure: Gr, = -2 x 104, Gr, = IO’ 

discretization error within 1% for the present range 

of parameters. 
Various streamline patterns of converged solutions 

are obtained as shown in Fig. 2 depending on the 

number of grids for simultaneous heat and mass trans- 
fer, Gr, = -2 x lo“, Gr, = 105, Pr = 8, SC = 2000, 

H/L = 4. It is interesting to note that the grid spacing 
affects the converged flow pattern as well as the accu- 
racy of the overall heat and mass transfer rates. A 
three cell flow structure is obtained with fine grid 

spacings. The grids coarser than 22 x 82 are not able 
to resolve the thin shear layers between cells. The 
maximum value of stream function obtained at 
34 x 130 is within 1% of that obtained at 42 x 162. 
The overall Nusselt and Sherwood numbers obtained 
at those grid spacings match up to three digits. In 
order to compromise between computational cost and 
accuracy, a grid of 34 x 130 is used for most runs 
except obvious simple unicell flow structures. Fur- 
thermore, it is recommended that the average grid size 
in both coordinate directions should be of the same 
order of magnitude to ensure convergence. 

4.2. Multicellfiow structure and comparison with exper- 

iments 

Figure 3 shows plots of velocity vectors, stream- 
lines, isotherms and isoconcentration contours of the 
converged solution for an opposing buoyancy con- 
dition : Gr, = -4 x lo’, Gr, = 3 x 106. The three cell 
structure is obtained as was observed in the cor- 
responding experiment [ 111. The velocity vectors indi- 
cate that the fluid inside the thin concentration bound- 
ary layers moves against the bulk fluid motion in the 

counter-clockwise direction driven by thermal buoy- 

ancy in the core. However, the direction of the fluid 
motion in the concentration boundary layer does not 

appear to effect the overall fluid motion in the core 
region significantly. There are high shear regions near 
the concentration boundary layer edges due to the 
bidirectional flows. This type of velocity pattern has 
not been observed in single diffusive convection flows. 
Figures 3(c) and (d) show that the temperature field 
is stably stratified in each cell, and that the con- 
centration is nearly uniform in each cell except near 
the walls and cell interfaces. The cross-sectional tem- 
perature and concentration profiles along the vertical 
centerline are shown in Fig. 4 in comparison with 
corresponding experimental results. The temperature 
profile measured in the bottom cell shows quite a 
discrepancy with the predicted result. The discrepancy 
is believed to be partly due to non-uniform properties 
of the fluid because of the temperature and con- 
centration gradients and partly due to the assumption 
of the constant concentration boundary condition on 
the anode surface. An additional explanation for the 
non-symmetry of the measurements is given in ref. 

s 11. 
A three cell flow structure is also obtained for an 

aiding buoyancy condition : Gr, = 3 x 105, Gr, = 3 x 
106. The basic overall flow structure is similar to the 
previous opposing buoyancy condition, even though 
the details are not the same. The cross-sectional 
vertical velocity profile does not show a bidirec- 
tional behavior in the boundary layers. The tem- 
perature and concentration profiles are similar to those 
of the previous opposing buoyancy case. The calculated 
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a) Velocity 

(t-50) 

b) Stream function 

(A’@.31 

c) Temperature 

(At=O.U 

d) Concentration 

(Ac=O.l, ~0.5) 

FIG. 3. Velocity vectors, streamlines, isotherms and iso~on~n~ration contours for an opposing buoyancy 
solution : Gr, = -4 x IO’, GT~ = 3 x 10”. 

concentration distribution is compared with a still 
photo~aph taken through the experimental cavity in 
Fig. 5. The cupric ion has a blue color, and the darkness 
of the color determines the concentration of cupric ion 
in the solution. 

The local Nusselt number distribution along the ver- 
tical heated wall, where the concentration is zero, is 
shown in Fig. 6(a). The Nusselt number shows local 
maximums and minimums along the wall as was found 

in the opposing buoyancy condition. The maximums 
occur where the fluid flows toward the wall, and the 
minimums occur where the fluid flows away from the 
wall. Figure 6(b) shows the local Sherwood number 
distribution along the wall in compari- 
son with the experimental results. The Sherwood 
number distribution appears to be nearly monotoni- 
cally decreasing with respect to the vertical coordinate. 
The mass transfer rate appears to be less affected 

a) Temperature b) Concentration 

YIH 

0.8 I 
I 

L * 9 - I 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

(f-Tcold)/(Thol-Tcold) (C-Clow)/(Chlgh-Clow) 

FIG. 4. Temperature and concentration distributions along the vertical centerline: Gr, = -4x lo’, 
GrM = 3 x lo6 (solid curves are numerical results, and symbols are experimental data). 
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(a) 
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(b) 

Fm. 5. Comparisons of concentration distributions in the cavity for aiding buoyancy (Auid rotates counter- 
clockwise in each cell). (a) Experiment (N = 8.5, Le = 280) : Gr7 = 3.X x IO’, Pr = 8.5; GrM = 3.2 x 10”. 
Sc = 2400. (b) Calculation (N = IO. Lr = 250) : Gr, = 3.0 x IO’, Pr = 8.0; GrM = 3.0 x IOh, SC = 2000. 

by the presence of the multiple cells in the core 
than the heat transfer rate, since the concentration 
gradients are mostly confined within the thin con- 
centration boundary layers regardless of aiding or 
opposing buoyancy conditions. The discrepancy in 

a) Nusselt number 

50f 

Nu 

“0.0 0.2 0.4 0.6 0.8 1 .O 

Y/H 

simulating the double diffusive convection exper- 
iments may be due to the assumption of constant 
properties, especially the viscosity and the diffusion 
coeffkients. It may also be due to non-uniform con- 
centration boundary conditions on the electrode sur- 

b) Sherwood number 

foci 

Sh 

0.0 0.2 0.4 0.6 0.8 1 .o 

Y/H 

Rc;. 6. Local Nusselt and Sherwood number distributions along the vertical heated plate : GrT = 3 x IO’, 
Gr, = 3 x to*. 
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faces used in the experiments. The assumption of uni- 

form concentration may not be appropriate for an 
electrochemical experiment in a stratified fluid in an 
enclosure. 

4.3. Eflect of buoyancy ratio on flow structures and 
transfer rates 

With the solutal Grashof number fixed at lo’, vari- 

ous thermal Grashof numbers are superimposed 
either for opposing or aiding buoyancy. Streamline 
plots for different opposing buoyancy conditions are 
shown in Fig. 7 as a function of buoyancy ratio. For 
IGr,J < 104, solutal buoyancy is dominant. The over- 
all structure is unicellular motion rotating in the clock- 
wise direction, which is similar to the pure solutal 

convection shown in Fig. 7(a). For IGr,J > 5x 104, 
thermal buoyancy is dominant. The overall flow struc- 
ture is again a unicell motion rotating in the counter- 

clockwise direction driven by thermal buoyancy. 
Compared to pure thermal convection, however, there 
are separation points near the bottom of the cold wall 
(left wall) and near the top of the hot wall. In the 
recirculation zones, the flow recirculates very slowly in 
the opposite direction driven by the solutal buoyancy. 
The streamlines of pure thermal convection, Gr, = 0, 
are shown in Fig. 7(e) for reference. The boundary 
layer is much thicker than that of pure solutal con- 
vection, since the more-diffusive species (heat) is 
dominant. 

For a range of Grashof number ratios between - 10 

Gm=O 

(A~=O.OOcl) 

N=-10 

Gv=-104 

(Av=O.O07) 

and -2, thermal and solutal forces are of the same 
order of magnitude. It could have been expected to 
have a transitional buoyancy ratio at which the flow 
direction is reversed. However, streamlines in Fig. 7(c) 
show a three-cell flow structure generated for N = - 5 
(Gr, = 2 x 10m4). Each cell rotates counter-clockwise 
driven by the thermal buoyant force. The thermal 
buoyant forces from the side walls overcome the shear 
stress between cells which rotate the fluid in each 
cell in the same direction. Small idling cells rotating 
clockwise can be observed between cells and walls. 

Streamline plots for various aiding buoyancy con- 
ditions are shown in Fig. 8. Figure 8(a) is a streamline 
plot at Gr, = 103, and shows a unicell flow structure 
rotating clockwise. For the mildly aiding condition 

with a small Gr, superimposed, the results are similar 
to pure solutal convection as was shown in Fig. 7(a). 

Figure 8(e) shows streamlines at Gr, = 1.5 x 104. 
Even though the magnitude of Gr, is smaller than 
Gr, (N = 6.67) the thermal buoyancy is dominant 
over the solutal one. The overall flow is unicellular 

motion similar to pure thermal convection as shown 
in Fig. 7(e), but rotating in the opposite direction. For 
10 < N < 50, three cell flow structures are obtained 
again (Figs. 8(b)-(d)). The range of N for the three 
cell flow structure in the aiding buoyancy conditions 
is found to be larger compared to the opposing buoy- 
ancy conditions. 

The overall Nusselt number is shown in Fig. 9(a) 
as a function of Gr,. The results for both aiding and 

N=-5 

Llllll I I I I I i/Ii 

Gv=-2x104 

(Av=O.l,-0.02) 

N=-2 

Gq=-5x104 

(Av=O.2) 

IIlIIlllrl 

Gv=-5x104 

GrM=O 

(Ay=O.2) 

FIG. 7. Streamline plots for opposing buoyancy conditions : Gr, = 10’. 
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N=lOO 

Gq=103 

(Ayr=O.O07) 

N=20 

Grp=5x103 

(A,w=O.O2) 

N=lO 

Gq=104 

(Ay=O.l) 

N=6.67 

Gxyl.5~104 

(Ay=O.l) 

FIG. 8. Streamline plots for aiding buoyancy conditions : Gr, = IO5 

opposing flow conditions are superimposed with the 
pure heat transfer results shown with a dotted line. 
As the thermal Grashof number increases, the Nusselt 
numbers for both aiding and opposing buoyancy con- 

ditions converge to the dotted line. In the other limit 
(GrT = 0), the Nusselt number approaches the value 
of pure conduction, which is 4. The overall Nusselt 
number for negative Gr, is reduced compared to the 

pure heat transfer results in the intermediate range 
of buoyancy ratios. It is interesting to note that the 
Nusselt number is also decreased slightly even for 
positive Gr, in the intermediate range of buoyancy 
ratios compared to the pure heat transfer case. This 
is due to the multicell flow structure explained earlier. 
However, the effect of the superimposed Gr, on the 
overall Nusselt number appears to be very weak in 
the present range of parameters. In Fig. 9(b), the 
overall Sherwood number is presented as a function 
of thermal Grashof number for aiding and opposing 
buoyancy conditions. The dotted line here indicates 
accompanied mass transfer rates due to a purely ther- 
mal-driven convection flow (not pure mass transfer 
convection). Over the entire range of Gr,, the Sher- 
wood number for the opposing buoyancy condition 
is observed to be smaller than that for the aiding 
buoyancy condition. 

4.4. Parametric map of double diffusive convection 
Figure 10 shows the parametric plane of Le-N, the 

ratio of two diffusivities vs the ratio of two buoyant 

forces, for cavities with an aspect ratio, H/L = 4, in 
laminar boundary layer flow. Positive N corresponds 
to aiding flow, and negative N corresponds to oppos- 
ing flow. Pure heat transfer falls on the line N = 0, 

and pure mass transfer falls on the lines N = f co. 
Along the line Le = 1, where both diffusivities are 
equal, the resulting buoyant force is a direct sum of 
the two buoyant forces. The point shown (N = - 1, 

Le = 1) is a theoretical point where there is no motion 
at all. The map should be the same for l/Le-l/N 

coordinates, because of the interchangeability of the 
roles of Pr-Sc and Gr,-Gr,. 

The shaded area shows the approximate range of 
multicell flow regions, based on the present numerical 
results. A multicell structure is possible only when the 
Lewis number is much different from unity. For the 
Lewis number close to unity, between 1 and 10, a 

unicell flow structure is obtained, the direction of 
which is determined by the buoyancy ratio. Moreover, 
the solutal Grashof number should be larger than the 
thermal Grashof number in magnitude in order to 
obtain a multicell structure. In thin concentration 
boundary layers, the solutal buoyant force should 
overcome the thermal buoyant force in the opposite 
direction and the resulting shear force by the flow. The 
range of the multicell region depends on the individual 
magnitudes of Grashof numbers as well as their ratio. 
In order to define the boundaries of different flow 
regimes more clearly, more results are needed in other 
ranges of the governing parameters. 
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a) Nusselt Number 

looil 

b) Sherwood Number 

loo0 J 

sh ‘~~~~ng 

1 o3 1 o4 5 

,dPT, 
IO6 10’ 

FIG. 9. Overall Nusselt and Sherwood numbers as a function of Gr, : Gr, = 10’. 

0 Unicell flow (clockwise) 
0 Unicell flow (wunfercbckwlse) 
0 Multicell flow 

opposing flow --+- aiding flow 
m 

2000/s 

1011 _-_-_*_*~ -~-~_~_-- 

2/l 

LB=% , 

0 
-10.5 -2 2 5 10 100 

-co -1 0 1 +0 

FIG. 10. Double diffusive flow regime plot: H/L = 4, Gr, = 10’. 
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CONVECTION NATURELLE DOUBLEMENT DIFFUSIVE DANS UNE CAVITE 
RECTANGULAIRE VERTICALE-II. ETUDE NUMERIQUE 

R&sum&On etudie numeriquement l’tcoulement de convection naturelle doublement diffusive dans une 
cavite rectangulaire verticale, de rapport de forme 4, quand les gradients de temperature et de concentration 
sont imposes dans la direction horizontale. Un algorithme aux differences finies est adopt& pour resoudre 
les equations non lineaires de quantite de mouvement couplees avec celles de I’energie et de la concen- 
tration Les structures multicellulaires de l’ecoulement observees experimentalement par les auteurs sont 
simulies avec succts. Diffirents regimes de structure d’ecoulement sont obtenus en fonction du rapport 

des nombres de Grashof pour des conditions de flottement aid&es ou opposees. 
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DOPPELT-DIFFUSIVE NATURLICHE KONVEKTION IN EINEM SENKRECHTEN 
RECHTECKIGEN HOHLRAUM-II. NUMERISCHE UNTERSUCHUNG 

Zusammenfassung-Die doppelt-diffusive natiirliche Konvektionsstrijmung in einem senkrechten recht- 
eckigen Hohlraum mit dem Seitenverhaltnis 4 wird numerisch untersucht, wobei Temperatur- und Kon- 
zentrationsgradienten in waagerechter Richtung aufgeprlgt werden. Die nicht-linearen Impulsgleichungen, 
die mit der Energie- und der Konzentrationsgleichung gekoppelt sind, werden mit Hilfe eines Finite- 
Differenzen-Verfahrens gel&t. Die von den Autoren im Experiment beobachteten multizellularen 
Strijmungsstrukturen bei doppelt-diffusiver Konvektion ergeben sich such in der Berechnung. Es zeigen 
sich Bereiche mit unterschiedlicher Striimungsstruktur, abhlngig vom Verhaltnis der Grashof-Zahlen bei 

gleichgerichteter und gegengerichteter thermischer und konzentrationsbedingter Auftriebsstromung. 

KOHBEKIJWI C J@IcPcDY3ME%4 TEI-IJIA I4 MACCbI B BEI’TWKAJIbHOtr 
ITP5IMOYf’OJIbHOR I-IOJIOCI-H-II. WNXIEHHOE HCCJIEAOBAHHE 

W%cnemto uo2nenyeTc.n ecrec~aemioxoHBe~iioe Teqe5ure ulmocrn c rQw#@ywei Tenna 
a ~accb~ B aepwanb~oi upa~oyronb~ofi nonocrn c oTHouxeimeh4 cropoe, panwhl4, npri tiauoxeiism 
TeMnepaTypaw H rowewpawomwx rpamiemoe mwpaanerrrrrn ropu30~nvraao. &a pememia 
w..nmie&wx yjx+ane& coxpaaeaaa 10mwcraa PBBX~HBII, ~o~~ecnio c ypaBlremmm coxpa~ems 

3H~IliH E MaCCbI, EiCIlOJIb3)‘CTCX MeTOR KOEe¶ibIX pa3HOCTek YCneUIlIO MOl&JIEip)?OTCP 3KCUepIIMeHTa- 

J-&HO Ha6mo&tammieca aBTOpBMa MEO~Oll¶eECTbIe Crpj’XTypbl TWieHlW B 3BBECEMOCTZ OT OTHOUIeHES 

¶liCCJl Qamn$a &ml Cnynio A npoTHBOIlOJlOXH0 HanpaBJIeHHbm nolnzeMHbu cm. 


